Ostfalia
Hochschule fiir angewandte
Wissenschaften

The following article is the final version submitted to IEEE after peer review; hosted by Ostfalia
University of Applied Sciences. It is provided for personal use only.

Securing Unprotected NTP

Implementations Using an NTS Daemon
Martin Langer, Thomas Behn and Rainer Bermbach

© 2019 IEEE. This is the author’s version of an article that has been published by IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

Full Citation of the original article published by IEEE:

M. Langer, T. Behn and R. Bermbach, " Securing Unprotected NTP Implementations Using an
NTS Daemon," 2019 IEEE International Symposium on Precision Clock Synchronization for
Measurement, Control, and Communication (ISPCS), Portland, OR, USA, 2019, pp. 1-6.

doi: 10.1109/1SPCS.2019.8886645

Available at:
https://doi.org/10.1109/1SPCS.2019.8886645

Securing Unprotected NTP
Implementations Using an NTS Daemon

Martin Langer
Ostfalia University of Applied Sciences
Wolfenbiittel, Germany
mart.langer@ostfalia.de

Abstract—This paper presents a method to secure the time
synchronization messages of various Network Time Protocol
(NTP) services. It uses the Network Time Security protocol
(NTS), which is now in a final, pre-RFC state, without the
necessity of changes of their underlying implementations. A
dedicated NTS service — the so-called NTS daemon (NTSd) —
captures the standard NTP messages of the client and passes
them on to an NTS server (tunneling). Supplied with the
respective timestamps the secured message travels back via the
NTS daemon to the NTP client, a procedure completely
transparent to the NTP services. The presented research and the
implementation of the method show advantages and limitations
of the approach. Furthermore, it offers limited correction of
NTS related time message asymmetries. Measurements provide
an insight into the achievable accuracy and show the differences
to NTP services with integrated NTS capability.

Keywords—Network Time Security (NTS); Network Time
Protocol (NTP); security; authentication; integrity; NTS daemon

I. INTRODUCTION

Time information is of paramount importance for
computer systems and their network communication. It
ensures accurate information exchange and interoperability.
Typically, atomic clocks or GNSS receivers serve as a primary
time source. Packet-based protocols like the Network Time
Protocol (NTP) distribute the time messages using standard
computer networks. Up to now, the dissemination of time
information normally has taken place without any security
measures, allowing precarious attacks. Existing security
techniques for NTP are either unsecure (Autokey [7]) or
impractical like the Symmetric Key [4] method as it needs
upfront distribution of cryptographic keys via non-electronic
media.

This situation motivated the development of a new kind of
security measure for packet-based time distribution protocols.
At the moment, the Network Time Security (NTS) protocol,
mainly for securing NTP, is in a final development state and
defined in an IETF draft in version 20 [1]. The release as an
RFC is expected in 2019. A fully functional proof-of-concept
(PoC) implementation is already available [15]. Final
productive versions are still under development, because of
the draft character of the specification.

Using NTS with an NTP service requires communication
between the two. NTP requests have to be secured by NTS and
responses need to be verified before standard NTP can use the
time information. Servers have to check the incoming requests
and to secure responses. In either case, a communication
interface between NTP and NTS is necessary. As there is no
generally defined interface up to now, integration of NTS into
NTP is specific to the particular implementation. Therefore,
every NTP/NTS developer designs his own version. Thus,
retrofitting of NTS in existing NTP implementations surely

Thomas Behn
Meinberg Funkuhren GmbH & Co. KG
Bad Pyrmont, Germany
thomas.behn@meinberg.de

Rainer Bermbach
Ostfalia University of Applied Sciences
Wolfenbiittel, Germany
r.bermbach@ostfalia.de

will take time and the spreading of heavily needed securing of
NTP by NTS will be hampered. In addition, special platforms
run the risk of late or even no supply with NTS security.

This paper presents a solution to the problem described.
The principle idea uses some kind of tunneling for NTP
messages over a so-called NTS daemon (NTSd). The NTSd
intercepts unsecured NTP messages, cryptographically
secures the requests by use of the Network Time Security
protocol and transfers them to another NTS daemon on the
server side. That daemon checks the messages and passes
them on to the standard NTP server. The server NTSd again
catches the NTP response packages, secures and sends them
to the client side. The client daemon checks the messages and
transfers the trusted ones to the NTP client. The entire
approach appears completely transparent to the NTP
communication partners. This procedure enables arbitrary
NTP implementations to use the NTS protocol without or with
minimal changes to their software. In addition, this document
analyzes possible asymmetries inferred by NTS and the NTSd
and depicts a compensation method.

Chapter II presents basic information on NTP and NTS.
Chapter III describes the tunneling concept, the
communication structure and the compensation method in
more detail. Chapter IV illustrates the measurement setup and
actual measurements using a first implementation of an NTS
daemon whereas chapter V discusses the measurement results
compared to unsecured NTP and an integrated NTS/NTP
implementation.

II. PRELIMINARIES

This chapter gives a short review of both protocols, the
Network Time Protocol (NTP) and its securing protocol
Network Time Security (NTS). Some details can already be
found e.g. in [2, 14]. More details on the current version of
NTS [1] are presented in [6].

A. The Network Time Protocol (NTP)

Presented already in 1985 as RFC 958 by D. L. Mills [3]
and revised in 2010 in version NTPv4 as RFC 5905 [4], the
Network Time Protocol is a long standing and wide-spread
protocol for distributing time information. NTP uses the
connection-less UDP protocol via port 123. Its architecture
operates with a hierarchically layered communication model.
Receiving time information from stratum 0 sources (typically
atomic clocks or GNSS receivers) stratum 1 servers distribute
the time to layers below and so on. With every layer, the
stratum number increases and the achievable accuracy
decreases. Besides other communication models, the unicast
mode (client to server, server to client) is the most prevalent
modus operandi. In unicast communication, the client sends a
request to the server at time T (Fig. 1) and the server receives
it at T». After processing, the server sends the response to the
request at T3 and the client receives it at T4. As all four

T, Ts

N

T1 T4

v

v

Fig. I. Timestamps used in NTP unicast mode

timestamps are recorded the client computes the delay 6 with
(1) indicating the so-called round-trip time of the packet, and
the time offset 6 between client and server using (2). With
equal propagation, delay of the packets from the client to
server and vice versa the time offset quantifies the time
difference between client and server. This aberration is used
to control the local clock of the client. Variation of the
propagation delay on the communication paths to and from the
server causes an uncorrectable time offset between server and
client.

0=(Ta=-T1) - (T3 -Tr) (1
0=((T2=T) - (Ts—Tz))/2)

B. The Network Time Security Protocol (NTS)

Application of NTP in Smart Grid communication in
Germany led to the motivation to enhance NTP with security
measures. As existing security features are unsecure or
impractical, the design of the Network Time Security protocol
started to solve this problem. It extends NTP communication
and allows cryptographically secured time messages. NTS is
still under development, but in a pre-final state [1] and the
transition to RFC is expected in the near future. The NTS
protocol underwent important design changes especially from
[5] to the following draft versions. Previous work in [6]
describes the differences and focuses on the achievable
improvements in practical use.

As the unicast mode is the prevalent model, NTS
concentrates on that mode. NTS in unicast mode proceeds in
two consecutive phases (Fig. 2). The first step uses TLS
1.2/1.3 [8] to start the NTS Key Establishment (NTS-KE). The
client sets up a TLS connection with the Key Establishment
server that may be the same computer as the NTS secured NTP
server or, for load balancing purposes, another dedicated
server. Using that link the symmetric keys for client and server
(C2S, S2C) are exchanged and a suitable AEAD
(Authenticated Encryption with Associated Data, [9]) method
is negotiated, defining the encryption algorithm. In addition,
the NTS-KE server supplies the client with a set of cookies.

program start

TLS handshake |

TLS
v1l.2/v1l.3

| NTS Key Establishment I

. @_‘ s

| NTS-secured NTPv4
Fig. 2. Phases in NTS secured NTP communication

X

no more
Cookies left

Cookies
available

Amongst other things, the cookies contain encrypted
information about the AEAD algorithm chosen and the
generated keys. At each time request, the client resends such
a cookie to the NTS server. The server derives the algorithm,
the keys and other information from the cookies, which allows
it to work in a stateless fashion.

After the NTS Key Establishment, the second phase
exchanges secured NTP packets by incorporating the NTS
content into NTP’s extension fields. To this end, it defines
special extension fields for the unique identifier, the cookies,
the cookie placeholders and the NTS authenticator. The
unique identifier prevents replay attacks. The cookies serve
for identification of the client and enable the stateless
operation of the server. The client transmits cookie
placeholders to get new cookies, thus accomplishing request
messages and response messages of equal size, which
prevents amplification attacks. The NTS authenticator
extension field carries the result of the AEAD algorithm
applied to the NTP packet. The communication in the second
phase may last until the server changes his internal crypto
parameters, the client runs out of cookies (normally only when
messages get lost) or its cookies are too old. Then the
communication restarts with the NTS-KE phase.

The Ostfalia University of Applied Sciences presented
first PoC implementations of NTS [15] as well as NTS
integrated in an own NTP service [19] starting a first NTS
server back in January 2018. Since then, Ostfalia created new
implementations whenever different draft versions were
released. Now three NTS servers with different draft versions
are offered for tests with other implementers. In addition,
Ostfalia defined a standard interface for its NTS library in C
or C++, which can be used by other NTP implementations
[15].

III. NTP TUNNELING CONCEPT

As already mentioned, the fast dissemination of the NTS
standard would be desirable, but is hindered by necessary
adaptations of the various NTP implementations and non-
standardized APIs of NTS libraries. A special service, the
NTS daemon, which tunnels NTP packets of any
implementation and secures them with NTS, presents the
solution and defuses the problem. In addition, NTP clients
using multiple server connections can freely decide which
connections should be secured and which not (Fig. 3). This
chapter describes the structure of the NTS daemon and the
communication process between NTP and NTSd that also
provides an opportunity to compensate for NTS-related time
lags.

A. The NTS Daemon (NTSd)

The basic idea is not to use NTS as an integral part of NTP
or to embed it as a module, but to operate it separately as a
service. The daemon communicates exclusively via the

NTP
Server

NTP
Server

NTS tunneling (NTSd)

’ NTP
NTS tunneling (NTSd) Server
NTP

Server

\ 4

Fig. 3. The NTS daemon can be used for arbitrary NTP connections

network interface with the connected NTP or NTSd instances.
This allows data exchange between NTP and NTSd without
the need for changes to the NTP implementation. The daemon
also manages connections to various time servers that provide
an NTSd interface and controls the secure communication.
This is done using the NTS embedded in NTSd (Fig. 4), that
ensures the integrity of the NTP packets and the authenticity
of the server.

The communication between NTP and NTSd takes place
using a UDP connection. The client-side NTSd listens on the
NTP standard port 123 of the localhost addresses to intercept
outbound NTP request packets. A port change in the
configuration of the NTP implementation is unnecessary
which simplifies the application of the NTSd on existing
systems. The simultaneous use of secured and unsecured NTP
connections thus is possible, but not advisable. If the NTP
client requires an unsecured connection to a time server, the
public IP address of the server is specified as usual in the NTP
configuration. However, to use a secure channel, an [Pv4
address from the localhost address range (127.78.79.1 to
127.78.79.255) is used. The transmitted NTP packet is
received via UDP port 123 from NTSd and processed
accordingly. The assignment of the NTP packet to the secure
time server is then carried out via an IP mapping within the
NTS daemon. The simplest solution here is to use a
configuration file for NTSd that manually assigns a secure
time server to a specific localhost address. However, an idea
for automated IP mapping could also be a NAT-like procedure
within NTSd.

The main task of the daemon is to secure outgoing and
verify incoming NTP packages secured by NTS. The
integration of NTS is realized as a module that communicates
via a defined programming interface. Similar to NTP, NTS
also allows simultaneous communication with different time
servers and manages individual states. The authentication of
the time servers and the negotiation of cryptographic
parameters are carried out via an NTS Key Establishment
server. This can be either a separate actor in the
communication chain or part of the server-side NTS daemon.
If the NTS-KE server is separate, the IP must be known and
set accordingly in the NTSd configuration. The transmission
of information and parameters between NTSd and the NTS-
KE server is independent of the NTP communication and
occurs over a separate TLS channel. The client and server
NTSd instances, however, communicate via a UDP channel.
The port on which the server-side NTSd listens is not defined
currently and thus freely configurable from the pool of
available port numbers. The NTS-secured NTP packets are
transmitted over this channel. If the NTSd receives such a
packet, it forwards it to the NTP instance as standard NTP
packet via a localhost connection after successful verification.
However, corrupt or manipulated packets are discarded.

Internet/ TCP | NTS-KE-
"] Server

| A

A A
» | NTS NTS >
localhost Internet / UDP

NTP [¢ NTSd

T
Client

NTSd [NTP

Fig. 4. NTS daemon concept overview

A precondition for the correct operation of the NTS
daemon is the use of the unicast operating mode in NTP, since
the support of other modes by NTS is not yet given. Some
restrictions may also occur with the localhost communication
between NTP and NTSd. For example, the NTP reference
implementation NTPD [10] uses part of the localhost address
range and locks the rest. To be able to use them again, a slight
adaptation of the NTPD implementation is necessary. This
may be possible with open source software, but it is not ideal.
In this case, a container (for example Docker [11]) with an
embedded NTS daemon offers a convenient alternative. The
communication between NTP/NTSd then operates via a freely
configured IP address. This procedure also solves possible
port conflicts if, in addition to the NTP client, an NTP server
application is located on the system and claims UDP port 123
for itself. The container solution allows the NTS daemon to
communicate with the NTP instance even without a localhost
connection. Furthermore, a later replacement of the NTP
implementation with one having NTS natively integrated is
easily possible and does not conflict with the NTSd. Of course
then the tunneling through the daemon is no longer necessary.

B. Communication Overview

The NTSd-secured communication always starts on the
client side by generation of an unsecured request packet in the
NTP instance (Fig. 5). Normally, the NTP client writes the
timestamp T into this package and sends it. In addition, it
temporarily stores the timestamp T; in order to be able to
assign the subsequent response to the request. Due to the
transmission of the NTP packet to a localhost address, the
packet arrives at the client NTS daemon at the UDP port 123.
There, the message is forwarded to the internal NTS module,
which first checks whether the destination server has already
been authenticated and the cryptographic information for
securing the NTP packets for this time server is available. If
not, a TLS connection to the NTS-KE server is automatically
established in order to obtain this information. Afterwards the
securing of the NTP package by NTS is possible. The
protection of the NTP packet is achieved by means of NTP
extension fields with integrity check of the packets. After
returning of the NTS-secured packet from the internal NTS
module to the client NTSd instance, it will be transmitted to
the server-side NTSd over the UDP connection. There NTSd
forwards the secured package directly to the NTS module,
which performs the integrity check. Upon success, the server
NTSd temporarily stores some NTS-related information of the
request packet and removes the extension fields added by
NTS. The daemon then forwards the standard NTP packet to
the NTP server via localhost.

Upon reception of this packet, the NTP server immediately
captures the receive timestamp T,. Subsequently, the
timestamp T; written by the client is shifted into the NTP
header of the request packet and the timestamp T, is added.
Now the server generates the transmit timestamp Tz and

NTP NTSd NTSd NTP
T1 > ! % | > T2
localhost tNTS Internet N'-]-‘-g localhost

Ts e ' B < T3

T T
Client Server

Fig. 5. NTSd-secured NTP communication

inserts it into the NTP packet. Immediately thereafter, this
packet is sent back to the server NTSd via the localhost
address. The daemon forwards the package directly to the
NTS module and uses the pre-stored package information
from the request to secure the package. Then, NTSd sends the
protected NTP-packet back to the client-side NTSd. The
previously stored packet information is discarded enabling a
stateless mode of the server NTSd. Meanwhile, the client-side
NTSd checks the secured NTP packet in the NTS module. If
there is no integrity violation, the daemon removes the
existing NTS extension fields from the NTP packet and
forwards it as a standard NTP packet to the client NTP
instance. In case of an error, NTSd discards the package.
Immediately after receiving the NTP packet, the NTP client
generates the destination timestamp T4 and then compares the
origin timestamp T with the T initially stored. If both match,
the NTP client uses the packet for time synchronization.

C. Delay Compensation

NTP uses the timestamps T to T4 to determine the round-
trip time of the packet and to calculate the time offset between
NTP client and server by use of (1) and (2). However, the
extension of the NTP communication path by the addition of
NTSd causes an increase of the round-trip times. This in turn
can lead to a reduction of the achievable synchronization
accuracy. In particular, the securing process by NTS causes
asymmetric runtimes and results in a systematic time offset.
On the server side, protection of NTP packages always occurs
after the timestamp T3 has been written and the duration of the
process varies depending on the performance of the hardware.

However, the additional time-synchronization jitter
generated by NTSd can be mitigated by extending the function
of the daemon. Therefore the client daemon generates four
additional timestamps, which are recorded immediately when
a packet is received or sent. These are stored for the duration
of the current request of the NTP client and allow the
segmentation of the round-trip time into their individual
phases. The server-side NTSd instance also records
timestamps and optionally can handle NTP server tasks. The
function of an NTP server in unicast mode is essentially
limited to the insertion of two timestamps into the NTP packet,
whereat the operating system provides the time information
via APIs. This functionality can easily be implemented in the
server NTSd itself, which eliminates the need for a dedicated
NTP server and the runtimes generated thereby. This leads to
the principal configuration shown in Fig. 6. Regardless, the
server can still use a separate NTP instance to ensure its own
time synchronization.

The delay compensation uses the four timestamps T, to T4
generated by NTP as a basis. The adjustment of these

NTP NTSd NTSd
Tia > Tlf s =
localhost LNTS Internet NTS
P | :
Ty |«
e Tz Taa Tap
N : y -
Client Server

Fig. 6. Additional timestamps taken for the round-trip time (RTT)
compensation; NTP server integrated into NTS daemon

timestamps allows the compensation of the processing times
in the NTS daemon, in order to reduce the jitter in time
synchronization. Since the client NTP instance stores T,
locally for later identification of the response, it is excluded
from adaptation. In the same way, T4 is generated in the NTP
software after receiving the response and thus cannot be
changed. Hence, the correction is limited to the adjustment of
the two timestamps T, and Ts.

T, is the server-side receive timestamp and is captured in
this model (Fig. 6) by the server NTSd after receiving the
request (T2a). The pure packet transit time in the network can
be determined by subtracting the process duration Tic — Tia.
Since the server does not know these runtimes, this adjustment
must be executed in the client daemon after receiving the
response message. For this purpose, it temporarily stores the
timestamps T1g and T'c until the corresponding reply message
has been processed. The duration Tic — Tia is composed of the
localhost transmission time Tig — T1a and the NTS processing
time Tic—Tis. Both runtimes are variable and can be
eliminated completely by temporary storage of the
timestamps, regardless of which time is actually stored in the
request packet.

T; is the server-side transmit timestamp of the NTP packet
and is also set by the server NTSd. By adding the duration
Tac — Taa to this timestamp, a later transmission time of the
server is simulated. As a result, the NTP client can again
determine the pure packet transit time of the response message
in the network. However, T3 is not completely correctable in
contrast to T,. One difficulty is the server-side protection of
the NTP packet by NTS at time T34, because the later dispatch
time T3 cannot be stored upfront in the NTP packet. An
adjustment of the timestamp after securing is no longer
possible, otherwise the integrity of the package would be
violated and the client would discard it after the verification
process. Although the processing time Tig—Tsa can be
determined by NTS, it cannot be used directly. Adding an
estimate value on Tsa to determine the probable transmission
time T3p provides one possible solution. This estimate could
be e.g. a moving median of the processing time, allowing a
rough correction. However, it should be noted that different
cryptographic parameters of the NTP packets and server-side
fluctuating workloads have an impact on the securing
duration. Another problem exists on the client side when
adding up the localhost runtime Tsc—Tss. Since the
timestamp Tac cannot be determined by the client NTSd, an
estimate also must be used here. Assuming that the internal
localhost runtimes between NTP and NTSd vary only slightly
for request and response packets, the duration Tig — Tia can
be used. Based on the model presented here, the following
corrected timestamps in (3) to (6) now result:

1= 1 ©)

2= 2 —(1 7 1) (4)

3= 3 +0 +(a4 — 4)+A (5)
with A =3 — 3 and A =1 -

4= 4 (6)

However, still a problem may occur with the timestamp
T;. NTP implementations using the data minimization draft

[12] to improve the privacy protection transmit a random
number (a so-called nonce) in the NTP packet instead of the
timestamp T;. Some implementations like NTPsec [13],
Chrony [17] or OpenNTPD [18] apply this method. As a
result, the duration Tig— Tia cannot be determined. One
solution is a localhost delay measurement of the client NTSd
to itself. Here, once or periodically, an NTP packet is sent out
by NTSd and addressed to itself. The round-trip time is
measured and used as an approximation for Tig—Tia. A
simple check of the received timestamp T; with the current
time allows NTSd to determine if it is a random number or a
timestamp.

It should be noted at this point that the use of filter
mechanisms or the phase-locked loop (PLL) is determined
exclusively by the NTP implementation used. NTSd does not
use any other filter mechanisms in addition to the described
timestamp correction.

IV. MEASUREMENT SETUP AND CONFIGURATION

Based on the NTS daemon described above, a PoC
implementation has been developed to provide insight into the
effects of the presented concept on the synchronization
accuracy. This allows an initial assessment of the practicality
and provides further information that is advantageous for
optimizing the process. The daemon written in the
programming language C uses an embedded NTS library
developed in C++ to secure the NTP packages. Both software
components are available as open-source software [15, 16].
The data exchange between NTSd and the embedded NTS
takes place via an interface provided by NTS. The daemon
implemented in the test setup is designed for Linux
environments, but can also be used for other operating systems
after some adaptations. The choice for the NTP itself fell on
the reference implementation NTPD [10] due to its wide
spread. This required small adjustments to ensure localhost
communication between NTP and NTSd. These were limited
to the adaption of three lines of code in NTPD to release a part
of the localhost address range. After final configuration of the
services by setting the ports and IP addresses, NTPD and
NTSd were operational and ready for tests.

A practical implementation of the test setup was carried
out with the support of Meinberg by providing suitable
measuring equipment. A LANTIME M500 (Fig. 7) forms the
hardware basis for the client as well as for the server. These
are equipped with a Oseven board carrying an Intel Atom
E3805 processor (2 x 1.33 GHz) as well as 2 GB RAM. These
devices run LANTIME OS v7 (LTOS), a Linux-based system
on which NTPD and the developed NTSd are executable.
During the measurement, client and server communicate over
Ethernet via a LANCOM GS-1224 switch with Gigabit
connection.

Fig. 7. Measurement setup with two LANTIME M500

Furthermore, both devices are equipped with a GPS
receiver (GPS180) which are used to synchronize the system
time. By contrast, the timestamps the client receives from the
server are not used for synchronization, but to measure the
time offset and delay, which NTPD continuously writes into
statistics files. This enables recording and comparing
measurement series with different configurations.

V. MEASUREMENT RESULTS

With the setup described in Chapter IV, two measurement
series were carried out to enable comparison between
unsecured and secured NTP communication. For both series,
the client performed several measurements simultaneously,
which the NTP implementation recorded. One measurement
series consists of three time sources (Fig. 8). The first source
"GENERIC" serves as reference time, which is provided by
the GPS180 module and has a high stability. The client
synchronizes itself with it in order to be able to evaluate the
delay and offset of the other channels. The second source
(127.78.79.1) is an NTP connection tunneled through the NTS
daemon to the connected time server. This can be seen from
the localhost address that is specified here as the server. The
third source (172.27.38.6) provides an unsecured NTP
connection, as it is usual with NTPD and is indicated by a
public IP. This one gets the time from the same time server,
but does not use the NTS tunneling. Both measurement series
in principle use the same sources, but differ in the NTS
configuration. While the NTSd in the first measurement series
exclusively tunneled the NTP packets, the compensation
method described in Chapter III was used in the second
measurement series. For all measurements, the console
outputs of all implementations had been deactivated in order
to avoid measurement distortion. Furthermore, both
measurements use a fixed poll of 4 (message generation every
16 seconds) for a duration of 3 hours each.

The results show that NTS tunneling of NTP packets
works well and that manipulated packets, unlike an unsecured
NTP connection, are discarded. The comparison of the results
reveals clear differences between the three measurements.

Fig. 9 presents the round-trip time (delay o) calculated by
Every 1.0s: ntpq -p Wed Mar 20 13:02:47 2019

remote refid

st t when poll reach delay offset

oGENERIC(@) .MRS. 6 . 0.000
127.78.79.1 -MRS. 6 - 0.031
172.27.38.6 -MRS. . -6.003

Fig. 8. Statistics output of NTPD. First line shows data of the
synchronization source, whereas the second gives data of the NTSd
secured communication. The last line presents data of a standard NTSd
connection.

Delay
1.00
0.80 Vel Ml
E 060 NTP NTSd NTSd-comp
= 040
Q
(]
0.20 P R——
0.00

0 1 2 30 1 2 30 1 2 3
Measurement duration [h]

Fig. 9. Delay & measured for standard NTP (left), normal NTSd tunneling
(middle) and compensated NTSd commmunication. Sampling time: 16s

Offset
0.070
NTP NTSd NTSd-com

0.050
= 0.030 MgV
= 0010 et
& -0.010
S -0.030

-0.050 «W‘iwwﬂh‘dﬁ“

-0.070

0 1 2 30 1 2 30 1 2 3

Measurement duration [h]

Fig. 10. Offset 8 measured for standard NTP (left), normal NTSd
tunneling (middle) and compensated NTSd commmunication

TABLE L RESULTS OF THE MEASUREMENT SERIES
Delay Offset Offset
mean value® mean value® | std deviation®
NTP 0.112 ms 3.991 ps 2.692 pus
NTSd 0.811 ms -46.149 ps 4.857 us
NTSd compensated 0.135 ms 35.683 us 4.184 pus

% number of samples: 675

NTPD for the respective connections. Fig. 10 shows the time
deviation (offset 0) of the time sources compared to the client
synchronized with GPS and Table 1 indicates the statistical
values of all connections. These results were calculated from
the measured values obtained by NTPd.

Due to the short transmission distance of the hardware,
the round-trip time of standard NTP is visibly short. The
uncompensated NTSd tunneling, on the other hand, has a
significantly higher value, since all runtimes caused by the
daemon are included in this value. With activated latency
compensation, NTSd is almost completely able to achieve the
same value as with the unsecured NTP connection. On the
other hand, the results for time offset are a bit surprising. The
unsecured NTP shows only a very small deviation of 3.9 ps,
while the uncompensated NTS tunneling causes a systematic
offset of -46 ps. Due to uncorrected processing times and
resulting asymmetries in the round-trip time, this result is as
expected. However, an increased offset is also visible in NTS
tunneling with active compensation.

Presumably, the kind of obtaining the timestamps from the
system clock makes the difference. NTSd currently uses so-
called userspace timestamps, which the operating system
provides by high-level functions. NTPD, on the other hand,
uses socket-timestamps, which are directly obtained from the
Linux kernel and provide more accurate values. In addition,
compared to a classic unsecured NTP connection, the client
and server of an NTSd connection generate seven extra
timestamps.

Further differences can be found in the send and receive
functions, which can have variable latency times. Depending
on the alignment and sum of the individual latencies, this leads
to an asymmetry in the calculated round-trip time, which is
reflected as a systematic offset. Though further investigation
is necessary, it can be seen that the NTS daemon has no strong
influence on the synchronization accuracy for typical NTP
applications.

VI. CONCLUSIONS AND FURTHER WORK

We proposed a solution to enhance standard NTP services
by NTS secured communication with no or rather minor
modifications to the normal NTP implementation. The
approach using an NTS daemon for securing and tunneling
standard NTP packets proved to perform well. Achievable
values of time offsets are more than sufficient for typical NTP
applications. The loss of accuracy is minimal and can be
minimized by further analysis and optimization, especially on
the method how to obtain the timestamps. Intensive testing
under realistic conditions is another point for future work to
create better comparison possibilities.

REFERENCES

[1] D. Franke, D. Sibold, K. Teichel, M. Dansarie, R. Sundblad, "Network
Time Security for the Network Time Protocol," Internet Draft, draft-
ietf-ntp-using-nts-for-ntp-20 July 2019.

[2] M. Langer, K. Teichel, D. Sibold and R. Bermbach, "Time
Synchronization Performance Using the Network Time Security
Protocol," in 2018 European Frequency and Time Forum (EFTF), doi
10.1109/EFTF.2018.8409017, Turin, Italy, 2018.

[3] D. L. Mills, "Network Time Protocol (NTP),"” RFC 958, doi
10.17487/RFC0958, September 1985.

[4] D. L. Mills, J. Burbank, W. Kasch, J. Martin, Ed., "Network Time
Protocol Version 4: Protocol and Algorithms Specification," RFC
5905, doi 10.17487/1fc5905, June 2010.

[5] D. Sibold, S. Roettger, K. Teichel, "Using the Network Time Security
Specification to Secure the Network Time Protocol," Internet Draft,
draft-ietf-ntp-using-nts-for-ntp-06, Sep 2016.

[6] M. Langer, K. Teichel, D. Sibold, R. Bermbach, "Performance
Comparison Between Network Time Security Protocol Drafts," IEEE
International Frequency Control Symposium and European Frequency
and Time Forum (IFCS-EFTF 2019), Orlando, USA, 2019, in press.

[7] D. L. Mills, B. Haberman, Ed., "Network Time Protocol Version 4:
Autokey Specification," RFC 5906, doi 10.17487/rfc5906, June 2010.

[8] E. Rescorla, "The Transport Layer Security (TLS) Protocol Version
1.3," RFC 8446, 10.17487/rfc8446, Aug. 2018.

[91 D. McGrew, "An Interface and Algorithms for Authenticated
Encryption," RFC 5116, doi 10.17487/RFC5116, Jan. 2008.

[10] Network Time Foundation, "NTPD," [Online] Available (03/26/2019):
https://github.com/ntp-project/ntp

[11] https:/www.docker.com, [Online] Available (03/26/2019)

[12] D. Franke, A. Malhotra, "NTP Client Data Minimization," Internet
Draft, draft-ietf-ntp-data-minimization-04, March 2019 (Work in
Progress).

[13] E. Raymond, G. Miller, M. Selsky, H. Murray, et al. "NTPsec,"
[Online] Available (03/26/2019): https://gitlab.com/NTPsec/ntpsec

[14] K. O'Donoghue, D. Sibold, S. Fries, "New security mechanisms for
network time synchronization protocols," IEEE International
Symposium on Precision Clock Synchronization for Measurement,
Control, and Communication (ISPCS 2017), Monterey, CA, 2017.

[15] M. Langer, "Network Time Security v0.9.0," [Online] Available
(03/26/2019): https://gitlab.com/MLanger/nts/tags/v0.9.0

[16] T.Behn, "NTSd - Network Time Security Protocol Daemon," [Online]
Available (03/26/2019): https://sourceforge.net/projects/ntsd/

[17] M. Lichvar, V. Blut C. Christianson, "Chrony," [Online] Available
(03/26/2019): https://git.tuxfamily.org/chrony/chrony.git/

[18] B. Cook, et al., "OpenNTPD," [Online] Available (03/26/2019):
https://github.com/openntpd-portable

[19] S. HéuBler, C. Jitte, T. Kompa, S. Konig, T. Tuschik, M. Langer,
"Network Time Protocol PoC v0.6.0," [Online] Available
(03/26/2019): https://gitlab.com/MLanger/ntp/tags/v0.6.0

